Automata

Starting point: The components of a system are interacting automata.

An automaton is a quintuple $A = (\Sigma, Q, q_0, \sigma, F)$ with:

- a set Σ of actions (sometimes called an alphabet),
- a set $Q = \{q_0, q_1, \ldots\}$ of states,
- a subset F of Q called the accepting states,
- a subset σ of $Q \times \Sigma \times Q$ called the transitions,
- a designated start state q_0.

A transition $(q, a, q') \in \sigma$ is usually written $q \xrightarrow{a} q'$.

The automaton A is said to be finite if Q is finite.

Transition Graph

An automaton is usually represented by a transition graph, whose nodes are states and whose arcs are transitions.

Example: A_1 is a finite automaton over the alphabet $\Sigma = \{a, b, c\}$:
Language of an Automaton

A string over an alphabet Σ is a finite sequence of symbols from that alphabet, usually written to one another and not separated by any characters. If w is a string over Σ, the length of w, written $|w|$, is the number of symbols that it contains. The string of length zero is called the empty string and is denoted by ε.

Let A be an automaton over Σ, and $s = a_1 \ldots a_n$, a string over Σ. Then A is said to accept s if there is a path in A, from q_0 to an accepting state, whose arcs are labeled successively a_1, \ldots, a_n. The language of A, denoted by $L(A)$, is the set of strings accepted by A.

The language $L(A)$ of any finite-state automaton A is regular.

Regular Sets

Operations for building sets of strings:

- Union
 \[S_1 + S_2 = \{ s \mid s \in S_1 \lor s \in S_2 \} \]
- Concatenation
 \[S_1 \cdot S_2 = \{ s_1 s_2 \mid s_1 \in S_1, s_2 \in S_2 \} \]
- Iteration
 \[S^* = \{ \varepsilon \} + S + S \cdot S + S \cdot S \cdot S + \ldots = S_0 + S_1 + S_2 + S_3 + \ldots \]

A set of strings over Σ is said to be regular if it can be built from the empty set \emptyset and the singleton set $\{ a \}$ (for each $a \in \Sigma$), using just the operations of union, concatenation, and iteration.

Arden’s Rule

The following equation hold:

- Union
 \[S_1 + S_2 + S_3 = S_1 + (S_2 + S_3) \]
- Concatenation
 \[S_1 \cdot S_2 \cdot S_3 = (S_1 \cdot S_2) \cdot S_3 \]
- Iteration
 \[T \cdot T^* = T + T^* \]

Note, \emptyset means “no path”, whereas ε means “empty path”.

Arden’s Rule: For any sets of strings S and T, the equation $X = S \cdot X + T$ has $X = S^* \cdot T$ as a solution. Moreover, this solution is unique if $\varepsilon \notin S$.
Behavior of Automata

An automaton is deterministic if for each pair \((q, a) \in Q \times \Sigma\) there is exactly one transition \(q \xrightarrow{a} q'\).

Deterministic automata: non-deterministic automata:

![Diagram of deterministic automata]

![Diagram of non-deterministic automata]

Vending Machine

A tea/coffee vending machine is implemented as black box with a three-symbol alphabet \(\{25\text{ct, tea, coffee}\}.

![Diagram of a vending machine]

Internal Transition Diagrams

Deterministic system S1: Non-deterministic system S2:

![Diagram of internal transition diagrams]

Are both systems equivalent?
The systems S_1 and S_2 are language-equivalent, but the observable behavior is not the same.

Language Equivalence

- Language equivalence is blind for non-determinism. In fact, each non-deterministic automaton can be transformed into an equivalent deterministic one.
- Language equivalence is blind for deadlocks.
- Language equivalence requires accepting states.

Automata - Summary

Language-equivalence is not suitable for all purposes. If we are interested in interactive behavior, then a non-deterministic automaton cannot correctly be equated behaviorally with a deterministic one.

A different theory is required!