Transitions and Equivalences

Overview
- LTS of concurrent processes
- Reactions vs. transitions
- Strong bisimulation up-to
- Algebraic properties

References
- Robin Milner, “Communication and Concurrency”
- Robin Milner, “Communicating and Mobil Systems”
Labeled Transitions

- Process transitions $P \xrightarrow{\alpha} P'$ extend the reactions $P \rightarrow P'$.

- The case $\alpha = \tau$ corresponds to a reaction, while the case $\alpha = a$ or $\alpha = \bar{a}$ corresponds to the capability of a process P to participate in a reaction provided that another process Q, running concurrently, can perform the complementary transition.
LTS of Concurrent Processes

The labeled transition system \((P, T)\) of concurrent processes over the action set \(\Sigma = L \cup \{\tau\}\) has the process expressions \(P\) as its states, and its transitions \(T\) are exactly those, which can be inferred from the rules in the table below:

\[
\begin{align*}
\text{SUM}_T : & \quad M + \alpha.P + N \overset{\alpha}{\rightarrow} P \\
L-\text{PAR}_T : & \quad \frac{P \overset{\alpha}{\rightarrow} P'}{P \mid Q \overset{\alpha}{\rightarrow} P' \mid Q} \\
R-\text{PAR}_T : & \quad \frac{P \overset{\alpha}{\rightarrow} P'}{Q \mid P \overset{\alpha}{\rightarrow} Q \mid P'} \\
\text{RES}_T : & \quad \frac{\text{new } a.P \overset{\alpha}{\rightarrow} \text{new } a.P'}{if \ \alpha \notin \{a, \bar{a}\}} \\
\text{IDENT}_T : & \quad \frac{\{\tilde{b}/\bar{a}\}P_A \overset{\alpha}{\rightarrow} P'}{A\langle\tilde{b}\rangle \overset{\alpha}{\rightarrow} P'} \quad \text{if } A(\bar{a}) = P_A
\end{align*}
\]

\[
\begin{align*}
\text{REACT}_T : & \quad \frac{P \overset{a}{\rightarrow} P'}{Q \overset{\bar{a}}{\rightarrow} Q'} \\
& \quad \frac{P \mid Q \overset{\tau}{\rightarrow} P' \mid Q'}
\end{align*}
\]
Inference Option 1

Consider the processes A and B:

\[A(a,b) = a.A'(a,b) \quad B(b,c) = b.B'(b,c) \]
\[A'(a,b) = b.A(a,b) \quad B'(b,c) = \overline{c}.B(b,c) \]

If \(B \mid A' \), then we can infer:

\[
\begin{align*}
\text{SUM}_T & \quad \text{b}.A(a,b) \xrightarrow{b} A(a,b) \\
\text{IDENT}_T & \quad A'(a,b) \xrightarrow{b} A(a,b) \\
\text{L-PAR}_T & \quad A'(a,b) \mid B(b,c) \xrightarrow{b} A(a,b) \mid B(b,c)
\end{align*}
\]

\[A'(a,b) = \overline{b}.A(a,b) \]
Inference Option 2

Consider the processes A and B:

\[
A(a,b) = a.A'(a,b) \quad B(b,c) = b.B'(b,c) \\
A'(a,b) = b.A(a,b) \quad B'(b,c) = \bar{c}.B(b,c)
\]

If B | A', then we can infer:

\[
\begin{align*}
\text{SUM}_T & \quad b.B'(b,c) \xrightarrow{b} B'(b,c) \\
\text{IDENT}_T & \quad B(b,c) \xrightarrow{b} B'(b,c) \\
\text{R-PAR}_T & \quad A'(a,b) | B(b,c) \xrightarrow{b} A'(a,b) | B'(b,c)
\end{align*}
\]
Consider the processes A and B:

\[A(a,b) = a.A'(a,b) \quad B(b,c) = b.B'(b,c) \]
\[A'(a,b) = \overline{b}.A(a,b) \quad B'(b,c) = \overline{c}.B(b,c) \]

If \(B \mid A' \), then we can infer:

\[
\text{REACT}_T \frac{B\langle b,c \rangle \xrightarrow{b} B'\langle b,c \rangle}{B\langle b,c \rangle \mid A'\langle a,b \rangle \xrightarrow{\tau} B'\langle b,c \rangle \mid A\langle a,b \rangle}
\]
We can infer:

\[
\begin{align*}
 A(a,b) &= a.A'(a,b) & B(b,c) &= b.B'(b,c) \\
 A'(a,b) &= \overline{b}.A(a,b) & B'(b,c) &= \overline{c}.B(b,c)
\end{align*}
\]
Structural Congruence vs. Transition

If $P \xrightarrow{\alpha} P'$ and $P \equiv Q$, then there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \equiv Q'$.

The proof is by induction on the depth of the inference of $P \xrightarrow{\alpha} P'$. That is, the full proof must treat all possible cases for the final step of the inference of $P \xrightarrow{\alpha} P'$. As a simplification it is enough to show the result in the special case that the congruence $P \equiv Q$ is due to a single application of a structural congruence rule. The general case follows just by iterating the special case.
What is the relationship between the reaction relation \rightarrow and the labeled transition relation $\xrightarrow{\alpha}$?

The transition rules mimic the reaction rules (and do more). In fact, the REACT rule can be mimicked by the transition rules SUM_T and REACT_T.
Tau Transition

\[P \quad \Rightarrow \quad P' \quad \Rightarrow \quad P \xrightarrow{\tau} \equiv P' \]

Note, \(P \xrightarrow{\tau} \equiv P' \) is an instance of relational composition; it means that, for some \(P'' \), \(P \xrightarrow{\tau} P'' \) and \(P'' \equiv P' \).

The proof is by induction of the inference of \(P \xrightarrow{} P' \).
Unrestricted Transition

Consider a transition $P \xrightarrow{\alpha} P'$ with $\alpha \neq \tau$.

Intuitively, this transition has to arise from some summation $\alpha.Q + M$ inside P, with α unrestricted.

Let $P \xrightarrow{\alpha} P'$. Then P and P' can be expressed, up to structural congruence, in the form

$$P \equiv \text{new } \tilde{z}((\alpha.Q + M) | R)$$
$$P' \equiv \text{new } \tilde{z}(Q | R)$$

where a is not restricted by $\text{new } \tilde{z}$.

The proof is by induction on the structure of inference of $P \xrightarrow{\alpha} P'$.
Reaction and Tau Transition

\[\text{P} \xrightarrow{\tau} \equiv \text{P}' \iff \text{P} \rightarrow \text{P}' \]
Properties of Transitions

- Given P, there are only finitely many transitions $P \xrightarrow{\alpha} P'$.

- If $P \xrightarrow{\alpha} P'$ then $\text{fn}(P', \alpha) \subseteq \text{fn}(P)$.

- If $P \xrightarrow{\alpha} P'$ and σ is any substitution then $\sigma P \xrightarrow{\sigma \alpha} \sigma P'$.
Structural Congruence vs. Bisimulation

- Structural congruence is a strong bisimulation over concurrent processes.

- If \(P \equiv Q \) then \(P \sim Q \).

\[S = \{ (P,Q) \mid P \equiv Q \} \]

Both statements follow from the proposition:
- If \(P \xrightarrow{\alpha} P' \) and \(P \equiv Q \), then there exists \(Q' \) such that \(Q \xrightarrow{\alpha} Q' \) and \(P' \equiv Q' \).
A n-ary semaphore $S^{(n)}(p,v)$ is a process used to ensure that no more than n instances of some activity run concurrently. An activity is started by acquiring a lock, denoted by the action p, and terminated by releasing the lock, denoted by the action v.

\[S^{(n)} \]
Unary and Binary Semaphores

We can define a unary and binary semaphore as

\[S^{(1)} = p \cdot S_1^{(1)} \]
\[S_1^{(1)} = v \cdot S^{(1)} \]
\[S^{(2)} = p \cdot S_1^{(2)} \]
\[S_1^{(2)} = v \cdot S^{(2)} + p \cdot S_2^{(2)} \]
\[S_2^{(2)} = v \cdot S_1^{(2)} \]

where the subscript \(k \) represents how many instances of the activity are running concurrently.
Unary vs. Binary Semaphores

Our expectation of the semantics of the defined semaphores is that a binary semaphore should behave like two unary semaphores running concurrently, that is, $S^{(1)} | S^{(1)}$.

Intuitively, each unary semaphore represents a single unit of some resource and an n-ary semaphore is simply a combination of n units of some resource. For example, in the case of a binary semaphore, we have $n = 2$ and we require:

$$S^{(1)} | S^{(1)} \sim S^{(2)}$$
Bisimulation Check

$S^{(1)} \ | \ S^{(1)} \sim S^{(2)}$

Proof:

We have to verify that the relation R, as defined below, is a strong bisimulation.

$$R = \{(S^{(1)}|S^{(1)},S^{(2)}), (S^{(1)}|S^{(1)},S_{1}^{(2)}), (S^{(1)}|S_{1}^{(1)},S_{1}^{(2)}), (S_{1}^{(1)}|S_{1}^{(1)},S_{2}^{(2)})\}$$
Strong Simulation up-to

- The relation R contains two pairs

 $$(S_1(1)|S(1),S_1(2)), (S(1)|S_1(1),S_1(2))$$

 which involve states that are the same up to structural congruence
 $(S_1(1)|S(1) \equiv S(1)|S_1(1))$.

- A binary relation S over P is a strong simulation up-to \equiv if, whenever PSQ,

 if $P \xrightarrow{\alpha} P'$ then there exists Q' such that $Q \xrightarrow{\alpha} Q'$ and $P' \equiv S \equiv Q'$.

 S is a strong bisimulation up-to \equiv if its converse has also this property.
$\equiv S \equiv$ is a composite relation. $P \equiv S \equiv Q$ means that for some P' and Q' we have $P \equiv P'$, $P' \overrightarrow{S} Q'$, and $Q \equiv Q'$.

In order for S to be a strong simulation up-to \equiv we must be able to complete the following diagram, given the top row and the left transition:
Consider two processes P and Q. To show that $P \sim Q$, it is enough to establish that the pair (P, Q) belongs to some strong bisimulation up-to \equiv.

If S is a strong bisimulation up-to \equiv and PSQ then $P \sim Q$.

Proof:
Let $P \equiv S \equiv Q$ and $P \xrightarrow{\alpha} P'$. We have to find a Q' that completes the following diagram:

\[
\begin{array}{c}
 P \equiv S \equiv Q \\
 \downarrow \alpha \\
 P' \\
\end{array} \\
\Rightarrow \quad \\
\begin{array}{c}
 P \equiv S \equiv Q \\
 \downarrow \alpha \\
 P' \equiv S \equiv Q' \\
\end{array}
\]
Proof

For some \(P_1 \) and \(Q_1 \) we have \(P \equiv P_1, P_1 S Q_1 \), and \(Q_1 \equiv Q \). Now, since \(\equiv \) is a strong bisimulation over concurrent processes, \(P \equiv Q \Rightarrow P \sim Q \), and knowing that \(S \) is a strong bisimulation up-to \(\equiv \), we can complete the following diagrams:
Semaphores Revisited

\[S^{(1)} \mid S^{(1)} \sim S^{(2)} \]

\[R' = \{(S^{(1)}|S^{(1)},S^{(2)}), (S_{1}^{(1)}|S^{(1)},S_{1}^{(2)}),(S_{1}^{(1)}|S_{1}^{(1)},S_{2}^{(2)})\} \]

\(R' \) is a bisimulation up-to \(\equiv \). By \(P \equiv S \equiv Q \Rightarrow P \sim Q \) we conclude \(S^{(1)} \mid S^{(1)} \sim S^{(2)} \).

Using the up-to technique we can construct simpler (or smaller) relations that are bisimulations.
Strong Equivalence vs. Strong Congruence

Consider the following example

\[a.0 \mid b.0 \sim a.b.0 + b.a.0 \]

Both processes exhibit the same interactive behavior.

In fact, when one interact with a process as a black box one cannot tell its structure; a parallel composition is behaviorally indistinguishable from a sum.
Parallel Composition vs. Sum

For all processes $P \in \mathcal{P}$, $P \sim \Sigma \{ \beta.Q \mid P \xrightarrow{\beta} Q \}$.

Proof:

Let $S = \{ \beta.Q \mid P \xrightarrow{\beta} Q \}$, so that the right-hand side is ΣS. We have to show that the transitions of P and ΣS are actually identical.

Suppose $P \xrightarrow{\alpha} P'$, then by definition $\alpha.P' \in S$, and hence we have $\Sigma S \xrightarrow{\alpha} P'$ by SUMT.

In the other direction suppose $\Sigma S \xrightarrow{\alpha} P'$, then it must have been inferred by SUMT, and hence $P \xrightarrow{\alpha} P'$ by definition of S.
Transitions of Compositions

A transition of a multiple composition occurs either due to one of its components, or due to a reaction between two sub-components.

For all $n \geq 0$ and processes P_1, \ldots, P_n:

$$P_1 | \ldots | P_n \sim \sum\{\alpha.(P_1 | \ldots | P_i' | \ldots | P_n) \mid 1 \leq i \leq n, P_i \xrightarrow{\alpha} P_i'\}$$
$$+ \sum\{\tau.(P_1 | \ldots | P_i' | \ldots | P_j' | \ldots | P_n) \mid 1 \leq i \leq j \leq n, P_i \xrightarrow{\alpha} P_i', P_j \xrightarrow{\bar{a}} P_j'\}$$

Proof: By induction on n.
Transition of Standard Forms

Every process can be expressed in standard form.

\[
\text{new } \tilde{a} (M_1 | ... | M_n)
\]

For all \(n \geq 0 \) and processes \(P_1, ..., P_n \):

\[
\text{new } \tilde{a} (P_1 | ... | P_n)
\]

\[
\sum \{ \text{\(\alpha \).new } \tilde{a} (P_1 | ... | P'_i | ... | P_j) | 1 \leq i \leq n, P_i \xrightarrow{\alpha} P_i' \text{ and } \alpha, \bar{\alpha} \notin \tilde{a} \} + \sum \{ \text{\(\tau \).new } \tilde{a} (P_1 | ... | P'_i | ... | P'_j | ... | P_i) | 1 \leq i \leq j \leq n, P_i \xrightarrow{a} P_i' \text{ and } P_j \xrightarrow{\bar{a}} P_j' \}\]

Proof:

The left-hand side takes the form \text{new } a_1 ... \text{new } a_k(P_1 | ... | P_n), and the result is shown by induction on \(k \).
Sequential Composition

The parallel composition $P \parallel Q$ allows concurrent activity of P and Q. However, sometimes one wishes to define sequential composition $P;Q$ to mean ‘when P finishes, Q starts’.

Sequential composition can be modeled in our process language, if we adopt the convention that each process performs a special action done as its last action before evolving into an inactive agent. Using this approach, sequential composition can be defined as follows:

$$P;Q = \textbf{new} \text{start}(\{\text{start/done}\}P \parallel \text{start}.Q)$$

where the name start does not occur free in P or Q.
Congruence

- Congruence means that we can ‘substitute equals for equals’.

- When a strong equivalence is a congruence, then if $P \sim Q$ then, in any system we can build with our process constructions, we can replace P by Q without altering the behavior of the system.

A strong equivalence is a process congruence if $P \sim Q$ implies

- $\alpha.P + M \sim \alpha.Q + N$
- $\text{new } a P \sim \text{new } a Q$
- $P | R \sim Q | R$
- $R | P \sim R | Q$

Proof:

For each case we have to show that a corresponding relation S is a strong bisimulation (e.g. $S = \{(P|R,Q|R) \mid P \sim Q \}$).