Using the π-Calculus

Overview
- Evolution
- Values as names
- Boolean values as processes
- Executor, a simple object model, lists
- The polyadic π-calculus
- Mobile telephones
- Processes as parameters
- A concurrent programming language

References
- Robin Milner, “Communicating and Mobile Systems”
- Robin Milner, Joachim Parrow, David Walker, “A Calculus of Mobile Processes, Part I+II”
Evolution

\[\overline{x}(y) \mid x(u)\overline{u}(v) \mid \overline{x}(z) \text{ can evolve to } \overline{y}(v) \mid \overline{x}(z) \text{ or } \overline{x}(y) \mid \overline{z}(v) \]

\[v \ x(\overline{x}(y) \mid x(u)\overline{u}(v)) \mid \overline{x}(z) \text{ can evolve to } \overline{y}(v) \mid \overline{x}(z) \]

\[\overline{x}(y) \mid \neg x(u)\overline{u}(v) \mid \overline{x}(z) \text{ can evolve to } \]
\[\overline{x}(y) \mid \neg x(u)\overline{u}(v) \mid \overline{z}(v) \text{ or } \overline{y}(v) \mid \neg x(u)\overline{u}(v) \mid \overline{x}(z) \]

and \[\overline{y}(v) \mid \neg x(u)\overline{u}(v) \mid \overline{z}(v) \]
Values As Names

If the values with which we wish to compute are drawn from a finite set, say \(V = \{v_1, \ldots, v_n\} \), then we can simply designate \(n \) names to denote these values as constants (e.g. \(v_1 \) to stand for \(v_1 \), \(\ldots \), \(v_n \) to stand for \(v_n \)).

For example, consider the case \(V = \{t, f\} \), the truth values. We set \(t = T \) and \(f = F \).

The match operator can be used to control computation. For example, the following process can be thought of as a C# \texttt{switch}-statement:

\[
x(y).([y = v_1]P_1 + [y = v_2]P_2 + [y = v_3]P_3)
\]
Abbreviations

Sometimes a communication does not need to carry a parameter. To model this we presuppose a special name, say ε, which is never bound. Then we write

\[\bar{x}.P \text{ in place of } \bar{x}\varepsilon.P \]
\[x.P \text{ in place of } x(y).P \text{ if } y \notin \text{fn}(P) \]

We often omit ‘.0’ in a process, and write for example

\[\bar{x}y \text{ in place of } \bar{x}y.0 \]
Boolean Values As Processes

We can represent Boolean values by the processes True_a and False_a emitting Boolean values along channel ‘a’, and a process $\text{Case}_a(P, Q)$, receiving a Boolean along channel ‘a’ and enacting P or Q depending on the value of the Boolean.

$$\begin{align*}
\text{True}_a &= a(x).a(y).\bar{x} \\
\text{False}_a &= a(x).a(y).\bar{y} \\
\text{Case}_a(P, Q) &= (\nu x \nu y)\bar{a}x.\bar{a}y.(x.P | y.Q)
\end{align*}$$

Now $\text{Case}_a(P, Q) | \text{True}_a$ evolves to $(\nu x \nu y)(x.P | y.Q | \bar{x})$, which in turn evolves to P (up-to structural congruence).
Consider the following process definition

\[\text{Exec}(x) = x(y) . \overline{y} \]

\text{Exec}(x) may be called an executor. It receives via channel ‘x’ a link, called ‘y’, and then activates that link. We can think of ‘y’ as a trigger of a process.

Now for any process P, we obtain the same behavior in each of the following cases:

- We run P directly,
- We prefix a trigger ‘z’ to P, and pass ‘z’ along the channel ‘x’ to the executor \text{Exec}(x) assuming that x, z \notin \text{fn}(P):

\[\forall z \ (\overline{x}z | z.P) \]
Exec Example

\[v \times (v \times (z \times \bar{z}, z.P) \mid \text{Exec}(x)) \]

\[v \times (v \times (\bar{z}, z.P) \mid x(y). \bar{y}) \]

\[v \times z (\bar{z}, z.P \mid x(y). \bar{y}) \]

\[\tau.v \times z (0, z.P \mid \bar{z}) \]

\[\tau.\tau.v \times z (0, P \mid 0) \]

\[\tau.\tau.P \]
A concurrent system can be thought of as a process community that appears to be an unstructured collection of autonomous agent. In practice, however, we can identify a structure. In particular, we can identify process group boundaries and communications across group boundaries.

ReferenceCell is a process group that represents an object with one private instance variable and two public methods to set and to access the object’s state.

\[
\text{ReferenceCell} \equiv (v, v) (\overline{v0} \\
| \text{s}(n).s(r).v(_).(\overline{vn} l \overline{r})\\n| \text{g}(r).v(i).(\overline{vi} l \overline{ri}))
\]
A List

A list is either \textit{Nil} or \textit{Cons} of value and a list.

The constant \textit{Nil}, the construction \textit{Cons}(V, L), and a list of \(n\) values are defined as follows:

\[
\begin{align*}
\text{Nil}_h & = \!h(n).h(c).\overline{n} \\
\text{Cons}(V, L)_h & = (v \, v \, l)(\!h(n).h(c).\overline{cv}.\overline{cl} \mid V\{v\} \mid L\{l\}) \\
[V_1, \ldots, V_n] & = \text{Cons}(V_1, \text{Cons}(\ldots, \text{Cons}(V_n, \text{Nil})\ldots))
\end{align*}
\]
\[[1, 2] = \text{Cons}(1, \text{Cons}(2, \text{Nil})) \]

\[\text{Cons}(2, \text{Nil}) = (v \vee l)(!h(n).h(c).\bar{c}v.d | 2\langle v \rangle | \text{Nil}(l)) \]

\[= (v \vee l)(!h(n).h(c).\bar{c}v.d | 2\langle v \rangle | (!l(n).l(c).\bar{n})) \]

\[\text{Cons}(1, [2]) = (v' \vee l')(!h(n).h(c).\bar{c}v'.d' | 1\langle v' \rangle | [2]l') \]

\[= (v' \vee l')(!h(n).h(c).\bar{c}v'.d' | 1\langle v' \rangle | ((v \vee l)!l'(n).l'(c).\bar{c}v.d | 2\langle v \rangle | (!l(n).l(c).\bar{n}))) \]

With \(v' = !v(r).\bar{r}v \)
Head, Tail, and IsEmpty

\[\text{Nil}_h = !h(n).h(c).\tilde{n} \]
\[\text{Cons}(V, L)_h = (v v l)(!h(n).h(c).\tilde{v}.\tilde{c}.l| V(v) | L(l)) \]
\[[V_1, \ldots, V_n] = \text{Cons}(V_1, \text{Cons}(\ldots, \text{Cons}(V_n, \text{Nil})\ldots)) \]

\[\text{Head}(r) = (v n, c)(\tilde{h}.\tilde{n}.c(v).c(l).\tilde{v} r) \]
\[\text{Tail}(r) = (v n, c)(\tilde{h}.\tilde{n}.c(v).c(l).\tilde{v} r) \]
\[\text{IsEmpty} = (v n, c)(\tilde{h}.\tilde{n}.n."Yes" + c."No") \]
List Experiments

IsEmpty(r) | Nil_h = (v n, c)(hnhc.n."Yes" + c."No") | h(n).h(c).n

evolves to (v n, c)(n."Yes" + c."No" | n)

which evolves to "Yes"

Head(r) | [1, 2] =

(v v l)(hnhc.c(v)c(l).vr) | (v v' l')(h(n).h(c).cv'd' | 1(v') | [2'](l'))

Evolves to (v v l v')(vr) | [1, 2](h) | !v'(r).r1

which evolves to r1
The Polyadic π-Calculus

In the monadic π-calculus, an interaction involves the transmission of a single name from one process to another. A natural and convenient extension is to admit processes that pass *tuples* of names.

The processes of the polyadic π-calculus are defined in the same way as the processes of the monadic π-calculus, except that the prefixes are given by

$$\pi ::= \bar{x}(\bar{y}) \mid x(\tilde{z}) \mid \tau \mid [x = y]\pi$$

where no name occurs more than once in the tuple \tilde{z} in an input prefix.

We write $|\tilde{x}|$ for the length of the tuple \tilde{x}. If the length of the corresponding tuple is zero then we write x for $x(\tilde{z})$ and \bar{x} for $\bar{x}(\bar{y})$.
Polyadic Interaction

The intended interpretations of the new polyadic prefixes are that \(\bar{x}(\bar{y}).P \) can send the tuple \(\langle \bar{y} \rangle \) via ‘x’ and continue as P, and that \(x(\bar{z}).Q \) can receive a tuple \(\langle \bar{y} \rangle \) via ‘x’ and continue as \(\{\bar{y}/\bar{z}\}Q \).

The reaction relation \(\rightarrow \) over \(P^{\pi_0} \) contains exactly those transition that can be inferred from the rules in the following table:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAU</td>
<td>(\tau.P + M \rightarrow P)</td>
</tr>
<tr>
<td>P-INTER</td>
<td>((x(\bar{z}).P + M) \rightarrow {\bar{y}/\bar{z}}P)</td>
</tr>
<tr>
<td>PAR</td>
<td>(P \rightarrow P' \rightarrow P'</td>
</tr>
<tr>
<td>RES</td>
<td>(P \rightarrow P' \rightarrow v a P \rightarrow v a P')</td>
</tr>
<tr>
<td>STRUCT</td>
<td>(P \equiv Q \rightarrow Q \rightarrow Q')</td>
</tr>
</tbody>
</table>
Church’s Encoding of Booleans

We can represent a Boolean value as a channel along which we send/receive two other channels for the next true and false interaction.

We define two processes True and False that serve as a process representation of their corresponding Boolean values. Both processes create a new channel ‘b’ that serves as the location of the Boolean value and return ‘b’ along the result channel ‘r’.

\[
\begin{align*}
\text{True}(b) & \equiv b(t, f).t \\
\text{False}(b) & \equiv b(t, f).f \\
\text{Not}(b, c) & \equiv b(t, f).\overline{c}(f, t)
\end{align*}
\]
Mobile Telephones

CAR(talk₁, switch₁)

BASE₁

switch₁

talk₁

alert₁

give₁

alert₂

give₂

PROVIDER₁

IDLEBASE₂
\[\text{SYSTEM}_1 = (\nu \text{ talk}_i, \text{ switch}_i, \text{ give}_i, \text{ alert}_i : i = 1,2) \\
(CAR(\text{talk}_1, \text{ switch}_1) | \text{BASE}_1 | \text{IDLEBASE}_2 | \text{PROVIDER}_1) \]
A car is parametric upon a *talk* channel and a *switch* channel. On the *talk* channel it can repeatedly talk, but at any time it may receive along the *switch* channel two new channels, which the car must then start to use (new base station):

\[
\text{CAR}(\text{talk, switch}) = \text{talk.CAR}(\text{talk, switch}) + \text{switch}(\text{talk', switch'}).\text{CAR}(\text{talk', switch'})
\]
A BASE can repeatedly talk with the CAR; but at any time it can receive along its give channel two new channels, which it should communicate to the CAR, and then become idle itself:

\[
\text{BASE}(t, s, g, a) = t \cdot \text{BASE}(t, s, g, a) + g(t', s') \cdot s(t', s'). \text{IDLEBASE}(t, s, g, a)
\]

An IDLEBASE may be told along its alert channel to become active:

\[
\text{IDLEBASE}(t, s, g, a) = a \cdot \text{BASE}(t, s, g, a)
\]
The PROVIDER knows initially that the CAR is in contact with BASE\textsubscript{1}. It can decide (according to a provider-specific protocol) to transmit the channel talk\textsubscript{2} and switch\textsubscript{2} to the CAR via BASE\textsubscript{1}, and alert IDLEBASE\textsubscript{2} of this fact:

\[
\text{PROVIDER}_1 = \text{give}_1\langle \text{talk}_2, \text{switch}_2 \rangle \text{alert}_2 \cdot \text{PROVIDER}_2
\]

\[
\text{PROVIDER}_2 = \text{give}_2\langle \text{talk}_1, \text{switch}_1 \rangle \text{alert}_1 \cdot \text{PROVIDER}_1
\]
Evolving System

\[\text{SYSTEM}_1 \]
\[\equiv \text{CAR}(\text{talk}_1, \text{switch}_1) | \text{BASE}_1 | \text{IDLEBASE}_2 | \text{PROVIDER}_1 \]
\[\rightarrow \text{CAR}(\text{talk}_1, \text{switch}_1) | \text{switch}_1(\text{talk}_2, \text{switch}_2).\text{IDLEBASE}_1 | \text{IDLEBASE}_2 | \text{alert}_2.\text{PROVIDER}_2 \]
\[\rightarrow \text{CAR}(\text{talk}_2, \text{switch}_2) | \text{IDLEBASE}_1 | \text{IDLEBASE}_2 | \text{alert}_2.\text{PROVIDER}_2 \]
\[\rightarrow \text{CAR}(\text{talk}_2, \text{switch}_2) | \text{IDLEBASE}_1 | \text{BASE}_2 | \text{PROVIDER}_2 \]
\[\equiv \text{SYSTEM}_2 \]
New System

CAR(talk_2, switch_2)

IDLEBASE_1

alert_1

give_1

PROVIDER_2

BASE_2

talk_2

switch_2

alert_2

give_2
Passing Processes As Parameters

- Passing processes as parameters is not represented directly in the π-calculus.

- In a direct representation we would write something like

\[\nu x (\bar{x}P | x(p).p) \]

where p is a variable over processes, and P is a process expression.
Suppose a direct representation of process parameters is given.

We can extend our example as follows:
- The sender, after sending P, wishes to run Q;
- The receiver (or executor), after receiving P, wishes to run it in parallel with R.

We would write

$$\nu x (x P.Q | x(p).(p | R))$$

where we assume that $x \notin \text{fn}(P, Q, R)$. A suitable generalized expansion law would equate this to

$$\tau.(Q | (P | R))$$
Shared Private Name

We can further extend our example by assuming that prior to the transmission of P there exists a restricted channel ‘w’ between P and Q.

\[\nu \, x(\nu \, w(\bar{x}P.Q) \mid x(p).(p \mid R)) \]

We have two alternatives for how the transmission of P should treat the private channel ‘w’:

- **Dynamic binding:** \(\tau.(\nu \, w \, Q \mid (P \mid R)) \)

 That is, the private link between P and Q is broken and the meaning of ‘w’ is defined with respect to its current scope.

- **Static binding:** \(\tau.\nu \, w'(\{w'/w\}Q \mid (\{w'/w\}P \mid R)) \)

 We use a form a scope extrusion where \(w' \) is a fresh name, that is \(w' \not\in \text{fn}(P, Q, R) \).
Modeling Process Parameters

We start with the following process expression

\[\nu \times (\nu w(\overline{x}P.Q) | x(p).(p | R)) \]

and replace it with

\[\nu \times (\nu z w(\overline{x}z.(z.P | Q)) | x(y).\overline{y}.R) \]

where \(y, z \notin \text{fn}(R) \), which by expansion, is equal to

\[\tau.\nu z (\nu w(z.P | Q)) | \overline{z}R \]

Now we change to bound name \(w \) to \(w' \notin \text{fn}(R) \) and obtain

\[\tau.\nu z w'({w'/w}z.P | {w'/w}Q | \overline{z}R) \]

which, by expansion and then the discard of the restriction becomes

\[\tau.\tau.(\nu w'({w'/w}P | {w'/w}Q | R) \]
A Concurrent Language

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V ::= X \mid Y \mid \ldots$</td>
<td>Variable</td>
</tr>
<tr>
<td>$F ::= + \mid - \mid \ldots \mid 0 \mid 1 \mid \ldots$</td>
<td>Function symbols</td>
</tr>
<tr>
<td>$C ::= V = E$</td>
<td>Assignment</td>
</tr>
<tr>
<td>$C ; C$</td>
<td>Sequential Composition</td>
</tr>
<tr>
<td>if E then C else C</td>
<td>Conditional Statement</td>
</tr>
<tr>
<td>while E do C</td>
<td>While Statement</td>
</tr>
<tr>
<td>let D in C end</td>
<td>Declaration</td>
</tr>
<tr>
<td>$C \parallel C$</td>
<td>Parallel Composition</td>
</tr>
<tr>
<td>input V</td>
<td>Input</td>
</tr>
<tr>
<td>output E</td>
<td>Output</td>
</tr>
<tr>
<td>skip</td>
<td></td>
</tr>
<tr>
<td>$D ::= \text{var} ; V$</td>
<td>Variable Declaration</td>
</tr>
<tr>
<td>$E ::= V$</td>
<td>Variable Expression</td>
</tr>
<tr>
<td>$R ; (E_1, \ldots, E_n)$</td>
<td>Function Call</td>
</tr>
</tbody>
</table>
Ambiguous Meaning

\[X = 0; \]
\[X = X + 1 \text{ par } X = X + 2 \]

What is the value of \(X \) at the end of the second statement?
Basic Elements

We assume that each element of the source language is assigned a process expression.

Variables: \(X(\text{init}) \equiv (\nu \nu, \text{setX}, \text{getX}) \)

\[
\begin{align*}
(\nu(\text{init}) \\
| \!\text{setX}(n, r).\nu.(\nu(n) | \check{r}) \\
| \!\text{getX}(r).\nu(i).(\nu(i) | \check{r}(i)))
\end{align*}
\]

Skip: \[\text{done} \]

\(C_1 ; C_2: \nu c(\{c/\text{done}\}C_1 | c.C_2) \)

\(C_1 \text{ par } C_2: (\nu l, r, t)(\check{t}(\text{true}) | \{l/\text{done}\}C_1 | \{r/\text{done}\}C_2 | \\
(\nu l, r, t)(\text{if } b \text{ then } r.\text{skip else } \check{l} | \check{t}(\text{false})) | \\
(\nu l, r, t)(\text{if } b \text{ then } l.\text{skip else } \check{r} | \check{t}(\text{false}))) \)
Expressions

\[[X] = (\nu \text{ ack})(\text{getX}(\text{ack}) | \text{ack}(v).\text{res}(v)) \]

\[F(E_1, \ldots, E_n) = \text{arg}_1(x_1) \ldots \text{arg}_n(x_n).\bar{F}(x_1, \ldots, x_n, \text{res}) \]

\[[F(E_1, \ldots, E_n)] = (\nu \text{ arg}_1, \ldots, \text{arg}_n)(\{\text{arg}_1/\text{res}\}[E_1]\{\text{arg}_1/\text{res}\} | \ldots \{\text{arg}_n/\text{res}\}[E_n] | [F]) \]
Operation Sequence

\[X = 0; \]
\[X = X + 1 \text{ par } X = X + 2 \]

What is the value of \(X \) at the end of the second statement?

According to the former definitions the value of \(X \) is either 1, 2, or 3. The three values are possible since every atomic action can occur in an arbitrary and meshed order.

To guarantee a specific result (e.g., 1 or 2), we need to employ semaphores.