A journey of a thousand miles begins with a single step.

Lao Tsu
Hoare Triples

\[C = \text{def} \quad C.\text{Target} := C.\text{Source} : \frac{\text{true}}{\{Q[c.\text{Source} \ \backslash \ C.\text{Target}]\}}\ C \ \{Q\} \]

\[C = \text{def} \quad \text{if } C.\text{Test} \text{ then } C.\text{Then} : \frac{\{P \land C.\text{Test}\}C.\text{Then}\{Q\}}{\{P\}C\{Q\}} \]

\[C = \text{def} \quad \text{if } C.\text{Test} \text{ then } C.\text{Then} \text{ else } C.\text{Else} : \frac{\{P \land C.\text{Test}\}C.\text{Then}\{Q\}}{\{P\}C\{Q\}} \]

\[C = \text{def} \quad C_1; C_2 : \frac{\{P\}C_1\{R\} \quad \{R\}C_2\{Q\}}{\{P\}C_1; C_2\{Q\}} \]

\{a > 4 \}

C_1: x := a + 2;

C_2: y := x - 2;

C_3: z := y + 2;

\{a > 4, x > 6, y > 4, z > 6\}

\[\begin{array}{c}
\text{true} \\
{a > 4}\ C_1\{S\} \\
\{S\} C_2\{R\} \\
{a > 4}\ C_1; C_2\{R\} \\
{a > 4, x > 6, y > 4, z > 6}\ C_3\{a > 4, x > 6, y > 4, z > 6\} \\
{a > 4}\ (C_1; C_2); C_3\{a > 4, x > 6, y > 4, z > 6\} \\
\{R\} z := y + 2\{a > 4, x > 6, y > 4, z > 6\} \\
\{R\} = \{a > 4, x > 6, y > 4, z > 6\} [y + 2 \backslash z] \\
\quad = \{a > 4, x > 6, y > 4, y + 2 > 6\} \\
\quad = \{a > 4, x > 6, y > 4, y > 6 - 2\} = \{a > 4, x > 6, y > 4\} \\
\{S\} y := x - 2\{a > 4, x > 6, y > 4\} \\
\{S\} = \{a > 4, x > 6, y > 4\} [x - 2 \backslash y] \\
\quad = \{a > 4, x > 6, x - 2 > 4\} = \{a > 4, x > 6\} \\
{a > 4} x := a + 2\{a > 4, x > 6\} \\
{a > 4} = \{a > 4, x > 6\} [a + 2 \backslash x] = \{a > 4, a + 2 > 6\} = \{a > 4\} \]
Problem 1

Validate

\{a =4, b>5\}

x := a + b * 3;

y := x - 10;

\{a=4, b>5, x>19, y>9\}

Solution:

P = \{a =4, b>5\}

C1 = x := a + b * 3;

C2 = y := x - 10;

Q = \{a=4, b>5, x>19, y>9\}

\{Q[x-10 \ y]\} y := x - 10\{Q\}

\{a=4, b>5, x>19, y>9\}[x-10 \ y]=\{a=4, b>5, x>19, x-10>9\}=\{a=4, b>5, x>19\}

P=\{a=4, b>5, x>19\}[a+b*3\ x] x := a + b * 3; \{a=4, b>5, x>19\}

P=\{a=4, b>5, a+b*3>19\}=\{a=4, b=5, b>(19-a)/3\}=\{a=4, b>5, b>(19-4)/3\}=\{a=4, b>5\}
Problem 2

Validate

\{x=b\}

if \ a >= \ b then \ x := \ a;

\{x=max(a,b)\}

Solution:

\[a >= b \rightarrow a = \max(a,b) \quad \frac{\text{true}}{\{x = b, a >= b, a = \max(a,b)\} \ x := a; \ {x = \max(a,b)} \} \]

\[a < b \rightarrow b = \max(a,b) \quad \frac{\{x = b, a >= b, b = \max(a,b)\} \ \rightarrow \ \{x = \max(a,b)\}}{\{x = b\} \text{if} \ a >= b \ \text{then} \ x := a; \ \{x = \max(a,b)\}} \]
Problem 3

Validate

\{true\}

if x < 0 then val := -x; else val := x;
\{val=abs(x)\}

Solution:

\begin{align*}
\text{if } x < 0 \rightarrow x &= -\text{abs}(x) \\
\text{true} &\quad \{x < 0, x = -\text{abs}(x)\} \text{ val := } -x; \quad \{\text{val} = \text{abs}(x)\}
\end{align*}

\begin{align*}
\text{if } x \geq 0 \rightarrow x &= \text{abs}(x) \\
\text{true} &\quad \{x \geq 0, x = \text{abs}(x)\} \text{ val := } x; \quad \{\text{val} = \text{abs}(x)\}
\end{align*}

\{true\} if x < 0 then val := -x; else val := x; \{val = \text{abs}(x)\}
Induction

- There are at most \(m^h \) leaves in an \(m \)-ary tree of height \(h \).

 Proof: We use mathematical induction on the height of trees.

 Base Step:
 Consider \(m \)-ary trees of height 1. These trees consist of a root with no more than \(m \) children, each of which is a leaf. Hence there are no more than \(m^1 = m \) leaves in an \(m \)-ary tree of height 1.

 Induction Step:
 Assume that the result is true for all \(m \)-ary trees of height \(k \) less than \(h \). Let \(t \) be an \(m \)-ary tree of height \(h \). The leaves of \(t \) are the leaves of the subtrees of \(t \) obtained by deleting the edges from the root to each of the vertices at level 1. Now, each subtree has a height less than or equal to \(h-1 \). So by the induction hypothesis, each of these rooted trees has at most \(m^{h-1} \) leaves. Since there are at most \(m \) such subtrees, each with a maximum of \(m^{h-1} \) leaves, there are at most \(m \times m^{h-1} = m^h \) leaves in the rooted tree.

 Q.E.D.

- Consider the following grammar:

 \[e ::= 0 \mid 2 \mid e + e \mid e * e \]

 Show that the value of every expression produced by this grammar is an even number.

 Proof: We use induction on the structure of expressions.

 \(e = 0 \): immediate

 \(e = 2 \): immediate

 \(e = e_1 + e_2 \): By the induction hypothesis, both \(e_1 \) and \(e_2 \) are elements of \(e \). Hence they produce even numbers. Let \(n_1 = 2k \) and \(n_2 = 2m \) be those even numbers. Then we have \(2k + 2m = 2(k + m) \), which is an even number as required.

 \(e = e_1 * e_2 \): By the induction hypothesis, both \(e_1 \) and \(e_2 \) are elements of \(e \). Hence they produce even numbers. Let \(n_1 = 2k \) and \(n_2 = 2m \) be those even numbers. Then we have \(2k \times 2m = 2(k * m) \), which is an even number as required.

 Q.E.D.
Problem 1

Use mathematical induction to prove that \(n! < n^n \) whenever \(n > 1 \).

Solution:

Base case \(n = 2 \):

\[
2! < 2^2 \\
1 \times 2 < 2 \times 2 \\
2 < 4
\]

Inductive Step:
- Assume \(n! < n^n \) if \(n > 2 \)
- We need to show \((n+1)! < (n+1)^{(n+1)}\) if \(n > 2 \)

\[
(n+1)! = (n+1)n! < (n+1)n^n \\leq (n+1)(n+1)^n = (n+1)^{(n+1)}
\]

Q.E.D.
Problem 2

Consider the following grammar:

\[t ::= \text{nil} \mid \text{leaf} \mid \text{node}(t, t) \]

Use structural induction on trees (with two base cases and one induction step) to prove that the size of a binary tree is at most \(2^h\), where \(h\) is the height of the tree.

Solution:

Base case \(t = \text{nil}\): vacuously true, there are no trees with \(h = 0\).

Base case \(t = \text{leaf}\): we have \(h = 1\), size = 1 < 2^1.

Inductive step \(t = \text{node}(t_1, t_2)\):

Assume the result is true for all trees of height \(k < h\). Let \(t\) be a tree of height \(h\). The subtrees of \(t\) have a height less than or equal to \(h-1\). By induction hypothesis, each of the subtrees has a size of at most \(2^{h-1}\). Since there are 2 such subtrees, each with a maximum size of \(2^{h-1}\), the size of \(t\) is at most \(2 \times 2^{h-1} = 2^h\).

Q.E.D.
Problem 3
Consider the following BNF specification:

\[
\text{<LambdaExp> ::= } \text{<Identifier> }
\]

| \(\lambda (\text{<Identifier> } \text{<LambdaExp> }) \) |
| \((\text{<LambdaExp> <LambdaExp> }) \) |

Use structural induction on \text{<LambdaExp>} to prove that if \text{e} \in \text{<LambdaExp>}, then \text{e} has the same number of left and right parentheses.

Solution:

Base case \text{le \equiv id}: #(== #) = 0

Inductive step 1, \text{le \equiv (\lambda (id) le_1)}:

Assume the result holds for \(k < n \). Let \(k_1 = #(\kappa_2 = #) \) of \text{le_1} with \(k_1 < n \), \(k_2 < n \). By assumption hypothesis, we have \(k_1 \equiv k_2 \). Therefore, \(n_1 = k_1 + 2 \equiv k_2 + 2 = n_2 \).

Inductive step 2, \text{le \equiv (le_1 le_2)}:

Assume the result holds for \(k < n \). Let \(k_{11} = #(\text{and } k_{12} = #) \) of \text{le_1}, \(k_{21} = #(\text{and } k_{22} = #) \) of \text{le_2} with \(k_{11} < n \), \(k_{12} < n \), \(k_{21} < n \), \(k_{22} < n \). By assumption hypothesis, we have \(k_{11} \equiv k_{12} \) and \(k_{21} \equiv k_{22} \). Therefore, \(n_1 = k_{11} + k_{21} + 1 \equiv k_{12} + k_{22} + 1 = n_2 \).

Q.E.D.